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16.1 INTRODUCTION 

Neural networks have enjoyed renewed popularity over the last decade under the appellation of 
“deep learning” [1,2]. The idea of mimicking the brain to process information, however, can be 
traced back half a century prior to Rosenblatt’s perceptron [3], and the first experimental models of 
biological neurons to Hodgkin and Huxley a few years prior [4]. The artificial neurons that make 
up neural networks take many forms, some more closely related to this biological inspiration. Yet 
all neural networks take the form of simple nodes that (a) perform a linear operation on multiple 
other neurons’ outputs, (b) integrate the resulting signals, and (c) perform a nonlinear transfor-
mation on the summed, weighted inputs. Various interconnection topologies—feedforward, 
feedback (recurrent), close-neighbor translationally-invariant (convolutional), etc.—endow the 
network with different computational properties. 

Such an asynchronous, parallel framework is at odds with the digital von Neumann architecture 
that electronic microprocessors often employ for their emulation. This mismatch was recognized 
early on, leading to pioneering work by VLSI engineers starting in the 1980s to map the physics of 
transistors to neuronal models for gains in computational density, energy efficiency, and speed [5]. 
However, Moore’s Law and Dennard scaling kept such “neuromorphic” architecture outside of the 
limelight in favor of general-purpose digital processors. Today, this scaling nears its end, and 
researchers turn to ever more specialized hardware such as graphical processing units [6], tensor 
processing units [7], and specially-configured field-programmable gate arrays [8] to run demanding 
neural network models. This is renewing interest in neuromorphic application-specific integrated 
circuits (ASICs), the extrapolated conclusion of this trend. 

Since the requirements of neuromorphic hardware differ from von Neumann digital computing, 
it is not obvious that silicon microelectronics must provide the best substrate for neuromorphic 
ASICs [9,10]. The reliance of neural networks on simple networked nodes suggests that a platform 
suited for communications, such as photonics, might have an advantage. This was recognized in 
the 80s [11], yet the lack of integrability limited investigations at the time. The commercial silicon 
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photonic platforms that have arisen over the last few years, however, now offer high index con-
trast, low-loss waveguides integrated with high bandwidth optoelectronics for signal modulation 
and detection [12]. Furthermore, the reuse of materials and processes from microelectronics allows 
the platform to enjoy its economies of scale. This, combined with the intrinsic appeal of photonics 
to emulate neural models, is one of the reasons that the newly termed field of neuromorphic 
photonics has attracted considerable attention [10,13–17]. 

In this chapter, we summarize past work and outline future directions of neuromorphic pho-
tonics, with a focus on silicon photonics implementations. We take a hierarchical approach. First, 
suitable neuronal models and the instantiation of their components is reviewed. Networking 
techniques to achieve neural networks proper is then discussed. Next, we review applications of 
neuromorphic photonics. We finish with a short outlook. 

16.2 SILICON PHOTONIC NEURONS 

A major impetus of the resurgence of neuromorphic photonics in the 2010s was the recognition 
that the dynamics of some active photonic components are mathematically equivalent to leaky 
integrate-and-fire spiking neuron models [18]. Silicon’s indirect bandgap precludes efficient 
light sources and amplifiers that would easily allow such a quantum-level spiking neuron model to 
be implemented. This can be overcome by, for example, depositing optically active films like 
phase-change materials [19] or by combining emission from emissive centers with single-photon 
detectors at cryogenic temperatures [20]. 

There are, however, alternate and easier to program neuron models that lend themselves 
almost perfectly to the room-temperature high-bandwidth optoelectronics of silicon photonic. 
Such continuous artificial neurons encode information in an analog property of the light instead 
of spike timing: 

W sds(t)/dt = ·f( (t)) s(t)/ + w u(t).in (16.1)  

Here, a neuron’s internal state s drives others through a continuous (non-spiking) nonlinear transfer 
function. This model has two important components: (1) matrix-vector multiplication W · x 
(equivalently multiply-accumulate (MAC) operations) between a neuron’s inputs x and its weights 
w, the non-biological equivalent of a synapse, and (2) a nonlinear transformation of the input state 
to the broadcast output f (s). τ captures the time constant of the nonlinear unit, and u is the external 
drive. Stripped of temporal components, this reduces to the non-dynamical artificial neuron model 
ubiquitous in deep learning for the neuron’s output f (s) = f (W · f (s) + winu). This artificial neural 
network model, while simple, has been immensely successful in applications and is almost ex-
clusively used. Implemented in silicon photonics, it offers a way to do complex neural computation 
with nanosecond latencies, opening up a wealth of new application domains. 

16.2.1 MULTIPLY-ACCUMULATE OPERATION 

Two broad philosophies have been explored for multiply-accumulate operations in silicon pho-
tonics: coherent and incoherent. In the coherent framework pictured in Figure 16.1a-b, beams-
plitters and phase shifters control the interference of light of a well-defined wavelength, mode, and 
polarization. When meshed appropriately, any unitary transformation can be performed on a path- 
encoded coherent input beam, directly implementing matrix-vector multiplication at the speed of 
light in the waveguide. This approach was originally considered for linear photonic quantum in-
formation processing, and was demonstrated with a mesh of Mach-Zehnder modulators [22]. Since 
the coherent approach is isomorphic to a vector-matrix multiplication, summing occurs naturally. 
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The incoherent approach, in contrast, is presented in Figure 16.1c-d. There, values are re-
presented through the relative intensities of light in a collection of wavelengths, modes and/or 
polarization. Linear operations are performed through selective filtering and/or attenuation. In this 
approach, a single photodetection step implements summing by yielding a photocurrent propor-
tional to the sum of the optical powers across the incoming modes. Termed “broadcast-and- 
weight”, this is explored in [23] and first demonstrated in silicon by controlling the transmission of 
microring resonators in [24]. Resonators can also only be used for filtering and followed by 
electro-absorption modulators to achieve the same effect [25]. 

To be able to adjust a neuron’s weights, the beamsplitters, phase shifters, filters, and attenuators 
mentioned above must be tunable. This constitutes the main source of complexity in a photonic 
neural network, since e.g., a fully connected network of N neurons will require N2 weights to be 
controlled. Silicon exhibits a strong thermo-optic effect, and local metal or doped heaters are often 
used for “slow” index changes to implement this reconfigurability. Phase-change materials have 
also been considered for non-volatile control of transmission [26,27]. A technique worth men-
tioning and used for incoherent networks is resonator photoconductive control. First applied to 
silicon photonic neuron weights in [28], this technique leverages the measurable photoabsorption- 
induced change of a doped ring resonator’s resistance to “lock” the filter transmission to the 
desired point. Using photoresistance as a proxy for optical power further has the advantage of not 
requiring access to the optical signal for calibration, enabling large-scale actuation [29]. Control of 
this transmission is what ultimately limits the effective fixed-point bit resolution that can be 
achieved for the multiply-accumulate operation, an important metric for comparison with digital 
alternatives. Currently, record 7.2 bits of accuracy and precision were demonstrated [29], close to 

FIGURE 16.1 Coherent (top) and incoherent (bottom) multiply-accumulate operations. (a) Coherent ap-
proaches can apply unitary rotation to incoming lightwaves. This unit can perform a tunable 2 × 2 unitary 
rotation denoted by U. (b) Example of scaling the system to perform a matrix operation in a feedforward 
topology, using a U unit at each crossing together with singular value decomposition. (c) Incoherent ap-
proaches can directly perform dot products on optically multiplexed signals. However, they rely on detectors 
and O/E conversion for summation. (d) The ability to multiplex allows for network flexibility, which can 
enable larger-scale networks with minimal waveguide usage. Figure and caption adapted from [ 21], with 
permission  
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the 8-bit reduced precision popular in digital deep learning, and above some electronic neuro-
morphic architectures (for instance, IBM TrueNorth’s 4 + 1 (sign) bits [30]). In practice, con-
trolling and reconfiguring these weights will require a full-scale neuromorphic photonic processing 
system. This will include the silicon photonic chip itself, copackaged with requisite laser sources, 
microcontroller, and RF interfaces [31]. 

The performance of passive photonics for MAC operations was compared to electronics in [21]. 
In terms of limits of analog compute, photonics shares a similar implementation strategy as re-
sistive (or memristive) crossbar arrays, with one part of the MAC held fixed (weight) and the other 
fast changing (input). This leads to similar fundamental limits. For state-of-the-art crossbar and 
photonic components, on-chip aJ/MAC efficiencies and 100s of PMACs/s/mm compute densities 
are possible. A photonic core scales better in terms of energy per MAC and compute density for 
(1) >100 μm core sizes, since crossbars see reduced bandwidth with length unlike waveguides, 
(2) for >500 channels due to the O(N) scaling of photodetector capacitance compared to O(N2) 
crossbar capacitance scaling, and (3) for low (<4 bits) of fixed-point resolution, due to photonics 
having extra (shot) noise increasing with power. Future such analyses should account for all other 
power consumption (control electronics, memory access, lasers, and E/O, O/E conversions if re-
quired). In any case, the end-to-end latency of passive photonic MACs can be lower than elec-
tronics, leading to unique application areas that will be explored in Section 16.3. 

16.2.2 NONLINEAR TRANSFORMATION 

The core of the neuron is its internal dynamics, leading to the nonlinear transformation it performs 
on its weighted, summed inputs. For path-encoded coherent beams, in theory any optical non-
linearity could be used to perform an all-optical nonlinear transformation. Materials deposited on 
waveguides such as phase-change [32] have demonstrated such functionality. They, however, lack 
reconfigurability once fabricated. This can be remedied with tunable silicon photonic devices at the 
cost of footprint [33,34]. The all-optical nonlinear approaches above require high optical powers, 
however, and so local opto-electronic conversions with a tap and detector that self-modulates 
phase were demonstrated [35]. The incoherent approach, on the other hand, already relies on 
photodetection for summing. The photocurrent can be used to actuate a wavelength (or mode, or 
polarization)-selective amplitude modulator, whose transfer function implements an effective 
optical-optical nonlinearity. In [36], this is achieved with a microring modulator driven by a 
photodetector output and is reproduced in Figure 16.2. While the full microring transfer function is 

FIGURE 16.2 Example of a silicon photonic continuous nonlinear unit and its experimentally measured 
transfer function. (a) False-color confocal micrograph of a fabricated neuron comprising a balanced photo-
detector pair and electro-optic modulator. (b-e) A variety of relevant O-E-O transfer functions seen from the 
PD-modulator pair, taken at different bias conditions: (b,c) sigmoids; (d,e) rectified linear units (“ReLU”). 
(f,g) Time resolved pictures of transfer functions: (f) the input is a 40-ns burst of a 100-MHz carrier; (g) both 
ReLUs. Figure and caption adapted from [ 36], with permission.  
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characterized by a Lorentzian, proper restriction of the current swings allows emulation of popular 
deep learning activation functions such as rectified-linear (ReLu), sigmoid, and quadratic (not 
shown). Similar to the weighting case, electro-absorption modulators were also proposed for this 
purpose [37]. 

An important property of the nonlinear unit is its cascadability. Physical cascadability requires 
that the output of a neuron be compatible with its input i.e., that the nodes described be networked. 
The incoherent units of Figure 16.2 do this by matching the resonator modulator’s wavelengths to 
the resonant filters used for the MAC operations. Gain cascadability quantifies if the output of a 
neuron suffices to drive all of its fan-out. The specific amount of gain required within a single 
nonlinear unit ultimately depends on signal levels and network characteristics such as fan-in, fan- 
out, and level of attenuation by the weights. Finally, for cascadability to be present from the point 
of view of noise, we require a signal-to-noise ratio >1 after the signal has propagated through the 
network. This means the neuronal nonlinearity must counteract the amplitude and phase noise due 
to e.g., imperfect control elements that are present in both coherent and incoherent approaches. 

A quantified measure of cascadability can be obtained through an autapse, or self-connection, 
experiment. Such experiments have been performed in both laser spiking [38] and silicon mod-
ulator neurons [36]. For the forward-biased pn-junction modulator neuron of Figure 16.2, for 
instance, a minimum optical pump power of 2Vπ/πRpdRb is required to have a gain larger than 
unity, and this is seen in experiments. The balance of signal degradation and noise trimming from 
the Lorentzian transmission in a pn-junction system with realistic component values was studied 
theoretically [39]. The results yielded over 50 dB of calculated signal-to-noise after an arbitrarily 
large network, hinting that such a system offers an amount of cascadability from the point of view 
of noise. 

16.3 SILICON PHOTONIC NEURAL NETWORKS AND APPLICATIONS 

Given a cascadable nonlinear unit (or layer) that can take in and perform weighted summation of 
input signals, neural networks proper can be considered. Coherent layers, by preserving their path- 
encoding scheme, are straightforwardly cascaded to form a deep feedforward network, although 
the mesh routing must be maintained [22]. For incoherent neurons where every node emits on its 
own channel (wavelength, mode, polarization), all of which can exist in the same single physical 
waveguide, the “broadcast-and-weight” protocol was introduced in [23]. The O/E/O conversion 
can be leveraged to isolate different waveguides on the same chip, enabling spectrum reuse. Which 
such “broadcast loop(s)” a neuron outputs into determines the network topology, with outputs back 
to a neuron’s inputs allowing recurrence. The specific network instantiation given this physical 
topology, which neuron connects to which and how strongly, is then dictated by the synaptic 
weight described in Section 16.2.1. For microring-based neurons as previous-discussed, the mi-
croring resonator filters can be assembled into what are called weight banks as displayed in 
Figure 16.3a [40]. Temporal multiplexing can be used to go beyond limited amount of hardware. 
Fast implementation of convolutional neural networks has been proposed this way by [41,42]. 

An approach related to recurrent neural networks operating at the network level, called reservoir 
computing, is briefly mentioned here since it was also demonstrated in silicon photonics [43]. The 
idea is to create a network with (semi) random connections such that it exhibits nontrivial dy-
namics, send time-series data through the system, and train e.g., the output layer of this “reservoir” 
[44,45]. This is attractive since it is easier than training a full recurrent neural network. It is a 
popular approach for photonics in general [46–48]. While sharing with deep learning the training 
of network parameters conditional on data, the requirement on the “neurons” as described in the 
preceding section is relaxed in this case, since the only requirement of the network is that it “lifts” 
the time-series input to a higher-dimensional space, effectively performing feature extraction. For 
instance, in silicon photonics, interference in passive structures and nonlinearity from photo-
detection are found to be enough to successfully perform computing tasks [43,49]. 
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16.3.1 APPLICATION I: NEURAL ODE SOLVER 

With an interconnection strategy, networks can be created and actual processing tasks considered. 
For instance, using the neural compiler Nengo [50], incoherent silicon photonic modulator neurons 
in a broadcast-and-weight configuration were configured for time series prediction [24]. The neural 
network emulates three coupled ODEs (Lorenz attractor), with parameters set to produce a chaotic 
output. The physical device and experimental setup, reproduced in Figure 16.3a-d, is used to 
extract experimental behavior for a single node. A 24-node network is then emulated, and its 
performance is favorably benchmarked against a CPU solving the same problem, with a predicted 
speedup of 294x. 

16.3.2 APPLICATION II: NONLINEAR PROGRAMMING AND MODEL-PREDICTIVE CONTROL 

If a neural network can model time dynamics quickly, model-predictive control is an interesting 
next step. Model-predictive control is a nonlinear scheme that, in opposition to linear control such 

FIGURE 16.3 Photonic neural network benchmarking against a CPU. (a) Concept of a broadcast-and- 
weight network with modulators used as neurons. MRR: microring resonator, BPD: balanced photodiode, LD: 
laser diode, MZM: Mach-Zehnder modulator, WDM: wavelength-division multiplexer. (b) Micrograph of 4- 
node recurrent broadcast-and-weight network with 16 tunable microring (MRR) weights and fiber-to-chip 
grating couplers. (c) Scanning electron micrograph of 1:4 splitter. (d) Experimental setup with two off-chip 
MZM neurons and one external input. Signals are wavelength-multiplexed in an arrayed waveguide grating 
(AWG) and coupled into a 2 × 3 subnetwork with MRR weights, w11, w12, etc. Neuron state is represented by 
voltages s1 and s2 across low-pass filtered transimpedance amplifiers, which receive inputs from the balanced 
photodetectors of each MRR weight bank. (e,f) Phase diagrams of the Lorenz attractor simulated by a 
conventional CPU (e) and a photonic CTRNN (b). (g,h) Time traces of simulation variables for a conventional 
CPU (g) and a photonic CTRNN (h). The horizontal axes are labeled in physical real time, and cover equal 
intervals of virtual simulation time, as benchmarked by γCPU and γPho. The ratio of real-time values of γs 
indicates a 294-fold acceleration. (i) Time traces of modulator voltages si (minor y-axis) for each modulator 
neuron i (major y-axis) in the photonic CTRNN. The simulation variables, x, in (h) are linear decodings of 
physical variables, s, in (i). Figure and caption adapted from [ 24], with permission.  
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as PID where only the immediate past is responded to, models future trajectories and proactively 
corrects its course towards an optimal solution that avoids constraints. Electronic processors im-
plementing these algorithms for e.g., chemical plant process these are capped at kHz speeds, 
whereas photonic neural networks can potentially reach hundreds of MHz, enabling new control 
regimes [31]. Figure 16.4 shows this process. The task must first be mapped to a quadratic pro-
gramming problem, which can then be compiled by a neural compiler into a neural network. The 
network contains a layer dedicated to solving the quadratic problem, and another to enforce the 
constraints. A photonic neural network can converge to a solution on the order of its neuron 
timescale, about 10 ns for the neuron of Figure 16.2. Figure 16.4c-d shows a set of 24 neurons 
solving the model-predictive problem, while predicting in advance if the constraints will be vio-
lated and reacting accordingly. 

16.3.3 APPLICATION III: INTELLIGENT SIGNAL PROCESSING 

An interesting use case is when data is already in the optical (and analog) domain. Fiber non-
linearity compensation is such a situation. Figure 16.5 displays microring modulator silicon 
photonic neurons described in Section 16.2.2 used to learn the transmission characteristics of a 
10,080 km trans-pacific transmission link. A two-layer feedforward network of such units is 
trained to compensate the nonlinear transmission impairment and achieves a Q-factor improvement 
of 0.51 dB. The results with the network trained with experimental data are only 0.06 dB from a 
numerical simulation with the same parameters. Since the neuron operates at comparable 

FIGURE 16.4 (a) Schematic figure of the procedure to implement the MPC algorithm on a neuromorphic 
photonic processor. Firstly, map the MPC problem to QP. Then, construct a QP solver with continuous-time 
recurrent neural networks (CT-RNN). Finally, build a neuromorphic photonic processor to implement the CT- 
RNN. (b) Schematic figure of construction of a QP solver with CT-RNN. In this example, N = 3, which is the 
prediction horizon, M = 6, which is the number of inequalities, and 2 is the vector dimension. (c) The 
trajectory of the moving target is shown in the black curve, and the blue dots and blue arrows are the 
simulated results of the position and velocity of the tracker at each time step respectively. The inset shows that 
the controller predicts a constraint violation and starts turning the tracker to avoid violating the acceleration’s 
constraint. (d) The “constraint checker” neurons fire around t = 0.5 and between t = 2 and t = 4, inhibiting the 
output of the “QP solver neurons” such that the outcome of the system does not violate the acceleration and 
position constraints, respectively. Figure and caption adapted from [ 31], with permission.  
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bandwidths to the data rata, this suggests that real-time processing is within reach to improve 
optical communications. 

Another intelligent signal processing application enabled by silicon neuromorphic photonic 
technology is in wideband RF signal processing. The linear part of silicon photonic neurons, for 
instance the weight banks displayed in Figure 16.3a-d, can be used on their own to perform e.g., 
principal component analysis [51] and independent component analysis [52]. These algorithms can 
perform dimensionality reduction on GHz modulated data in the optical domain to perform e.g., 
blind source separation. Doing this in an analog, wideband, passive photonic domain obviates the 
need for digital signal processing. It further requires only a single analog-digital conversion at the 
output instead of one per narrowband channel considered per input at the front end. 

16.4 CONCLUSION AND FUTURE DIRECTIONS 

Neuromorphic photonics has experienced rapid growth over the last few years. Still, there are 
many outstanding questions. The introduction of new electro-optic materials to silicon photonics 
would improve performance and functionality of silicon photonic neural networks. Tighter co-
integration of light sources and amplifiers is a general aim of silicon photonics, and would also 
increase opportunities in neuromorphic engineering as well as ease of deployment [54]. The 
advent of zero-change CMOS silicon photonics platforms [55] is exciting to break the gain- 
bandwidth tradeoff in current silicon modulator neurons and improve density of control elec-
tronics. In the short term, this may be accomplished with separate dedicated CMOS chips 
wirebonded or flip-chip bonded to the silicon photonic chips. The applications reviewed were 

FIGURE 16.5 Photonic silicon photonic neural network for fiber nonlinearity compensation. (a) Schematic 
of ANN-NLC structure. (b) Image of the PNN chip under test and experimental setup for optical coupling and 
wirebonding. Constellations of X-polarization of a 32 Gbaud PM-16QAM, with the ANN-NLC gain of 
0.57 dB in Q-factor (c) and with the PNN-NLC gain of 0.51 dB in Q-factor (d). Figure and caption adapted 
from [ 53], with permission.  
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focused on inference tasks, but on-chip learning is also a very promising area. Spike 
timing–dependent plasticity was demonstrated with phase-change materials [26], and in the 
coherent approach, time-reversal symmetry to obtain gradients from intensity measurements was 
suggested to perform in-situ backpropagation [56]. In any case, ongoing investigations in neu-
romorphic photonics enabled by silicon photonics promise to bring machine intelligence to 
unexplored regimes, a salutary direction for a society increasingly dependent on neural network 
processors. 
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